Signal features
Different features that can be calculated with the vibration signal
- pyvib.features.LOG(x)
Exponential of the mean absolute logarithm
- Parameters
x (float 1D array) – Signal
- pyvib.features.SDofIHC(x)
Standard deviation of inverse hyperbolic cosine
- Parameters
x (float 1D array) – Signal
paper (Taken from) –
Machinery (A Model-Based Method for Remaining Useful Life Prediction of) –
al. (Yaguo Lei et) –
- pyvib.features.SDofIHS(x)
Standard deviation of inverse hyperbolic sine
- Parameters
x (float 1D array) – Signal
paper (Taken from) –
Machinery (A Model-Based Method for Remaining Useful Life Prediction of) –
al. (Yaguo Lei et) –
- pyvib.features.absoluteMean(x)
Get absolute mean of signal
- Parameters
x (float 1D array) – Signal
- pyvib.features.approximateEntropy(U, N=1000, m=2, r=None)
Approximate the entropy of a signal
- Parameters
U (float 1D array) – Signal
N (int, optional) –
m (int, optional) –
r (float, optional) –
https (//en.wikipedia.org/wiki/Approximate_entropy) –
from (Default values taken) –
Yan –
Ruqiang –
Gao. (and Robert X.) –
monitoring." ("Approximate entropy as a diagnostic tool for machine health) –
(2007) (Mechanical Systems and Signal Processing 21.2) –
- pyvib.features.bearingEnergy(Y, df, X, bearing)
Energy within band of typical characteristic frequencies
- Parameters
Y (float 1D array) – Spectrum aplitude
df (float) – Frequncy spacing in Hz
X (float) – Shaft speed in Hz
bearing (float 1D array) – Bearing characteristic frequencies in orders (i.e. per revolution) bearing[0] - Inner race bearing[1] - 2x roller spin frequency bearing[2] - Cage frequency bearing[3] - Outer race frequency
- pyvib.features.clearanceFactor(x)
Clearance factor
- Parameters
x (float 1D array) – Signal
- pyvib.features.crestFactor(x)
Crest factor
- Parameters
x (float 1D array) – Signal
- pyvib.features.frequencyCenter(f, Y)
Frequency center of spectrum
- Parameters
f (float 1D array) – Frequency of FFT
Y (float 1D array) – Amplitude of FFT
- pyvib.features.impulseFactor(x)
Impulse factor
- Parameters
x (float 1D array) – Signal
- pyvib.features.kurtosis(x)
Get kurtosis value
- Parameters
x (float 1D array) – Signal
- Returns
K – Kurtosis
- Return type
float
- pyvib.features.kurtosisFactor(x)
Kurtosis factor
- Parameters
x (float 1D array) – Signal
- pyvib.features.maxToMinPowerDensityDrop(Y, df, X, bearing)
Maximum to minimum power density drop
- Parameters
Y (float 1D array) – Spectrum aplitude
df (float) – Frequncy spacing in Hz
X (float) – Shaft speed in Hz
bearing (float 1D array) – Bearing characteristic frequencies in orders (i.e. per revolution) bearing[0] - Inner race bearing[1] - 2x roller spin frequency bearing[2] - Cage frequency bearing[3] - Outer race frequency
- pyvib.features.medianFrequency(Y, df)
Median frequency of a spectrum
- Parameters
Y (float 1D array) – Spectrum aplitude
df (float) – Frequency spacing between bins
- pyvib.features.myoPulsePercentage(x, eps=5.0)
Myo pulse percentage Sum of all impulses greater than a threshold eps
- Parameters
x (float 1D array) – Signal
eps (float, opional) – Threshold
- pyvib.features.peakToPeak(x)
Peak-to-peak of signal
- Parameters
x (float 1D array) – Signal
- pyvib.features.rms(y)
Get RMS vlaue
- Parameters
y (float 1D array) – Signal
- Returns
RMS – RMS
- Return type
float
- pyvib.features.rootMeanSquareFrequency(f, Y)
Root mean square frequency
- Parameters
f (float 1D array) – Frequency of FFT
Y (float 1D array) – Amplitude of FFT
- pyvib.features.shapeFactor(x)
Shape factor
- Parameters
x (float 1D array) – Signal
- pyvib.features.skewnessFactor(x)
Skewness factor
- Parameters
x (float 1D array) – Signal
- pyvib.features.slopeSignChange(x, epsilon=0.5)
Slope sign change
- Parameters
x (float 1D array) – Signal
epsilon (float, optional) –
paper (Taken from) – Nayana, B. R., and P. Geethanjali. “Analysis of Statistical Time-Domain Features Effectiveness in Identification of Bearing Faults From Vibration Signal.” IEEE Sensors Journal 17.17 (2017): 5618-5625.
- pyvib.features.snr(r, Fs, ma=0.05, mb=0.5, cb=3, mc=0.05, md=0.6, c=2, c_ech=0.05, J_min=3, toler=0.1)
Estimates the Signal-to-noise ratio.
Based on “About periodicity and signal to noise ratio - The strength of the autocorrelation function.” by Nadine Martin and Corinne Mailhes
- Parameters
r (float 1D array) – The signal to estimate SNR of
Fs (float) – Sampling rate
ma (float) – Lag support start, percentage of r.size
mb (float) – Lag support end, percentage of r.size
cb (int) – Tolerance factor
mc (float) – Lag support start, percentage of r.size
md (float) – Lag support end, percentage of r.size
c (int) – Tolerance factor
c_ech (float) – Tolerance factor
J_min (int) – Minimum number of detected maxima
toler (float) – Tolerance factor applied to median
- Returns
SNR_hat (float) – Estimated SNR ratio in dB
flags (list, size=4) – Extra information about the calculation
Element[i]: 0 : boolean
0 if r is not aperiodic (Positive) 1 if r is random noise
- 1boolean
0 if card(ksi) > J_min (Positive) 1 else
- 2float
Confidence value ratio
- 3float
Estimated fundamental frequency
- pyvib.features.squareMeanRoot(x)
Square mean root of signal
- Parameters
x (float 1D array) – Signal
- pyvib.features.standardmoment(x, k)
Get standard moment of choice
- Parameters
x (float 1D array) – Signal
k (int) – Desired moment
Returns –
SM (float) – Standard moment of choice
- pyvib.features.waveformLength(x)
Waveform length of signal
- Parameters
x (float 1D array) – Signal
paper (Taken from) – Nayana, B. R., and P. Geethanjali. “Analysis of Statistical Time-Domain Features Effectiveness in Identification of Bearing Faults From Vibration Signal.” IEEE Sensors Journal 17.17 (2017): 5618-5625.
- pyvib.features.willsonAmplitude(x, epsilon=0.5)
Willson amplitude
- Parameters
x (float 1D array) – Signal
paper (Taken from) – Nayana, B. R., and P. Geethanjali. “Analysis of Statistical Time-Domain Features Effectiveness in Identification of Bearing Faults From Vibration Signal.” IEEE Sensors Journal 17.17 (2017): 5618-5625.
- pyvib.features.zeroCrossing(x, epsilon=0.5)
Zero crossing og signal
- Parameters
x (float 1D array) – Signal
epsilon (float, optional) –
paper (Taken from) – Nayana, B. R., and P. Geethanjali. “Analysis of Statistical Time-Domain Features Effectiveness in Identification of Bearing Faults From Vibration Signal.” IEEE Sensors Journal 17.17 (2017): 5618-5625.