Statistical functions
Statistical functions
- pyvib.stats.EHNR(x, Fs=1.0, debug=False)
Get Envelope Harmonic-to-noise ratio Based on: Xu, X., Zhao, M., Lin, J., & Lei, Y. (2016). Envelope harmonic-to-noise ratio for periodic impulses
detection and its application to bearing diagnosis.
Measurement, 91, 385-397.
- Parameters
x (float 1D array) – Signal
Fs (float, optional) – Sampling frequency
debug (boolean, optional) – Whether debug information is returned
- Returns
EHNR – The EHNR value
- Return type
float
- pyvib.stats.arresidual(t, y, a)
Returns the residual of the autoregressive model with coefficients a
- Parameters
t (float 1D array) – Time signal
y (float 1D array) – Signal to filter
a (float 1D array) – AR model coeffs
- Returns
t (float 1D array) – New time signal
y (float 1D array) – Filtered signal
- pyvib.stats.arresponse(t, y, a)
Returns the predicted response of the autoregressive model with coeffs a
- Parameters
t (float 1D array) – Time signal
y (float 1D array) – Signal
a (float 1D array) – AR model coeffs
- Returns
t (float 1D array) – New time signal
y (float 1D array) – Filtered signal
- pyvib.stats.covariance(A, printSingular=False, tol=0.9, skipSignals=[])
Compute the covariance of columns in matrix A
- Parameters
A (array) – [m,n] array with m observatios and n signals.
printSingular (bool, optional) – Print list of singular signals
- Returns
rho (array) – Covariance matrix
occurences (array) – How many other signals each signal is similar to.
Maximize number of signals such that all are uncorrelated according to the tolerance.
- Aarray, or list of arrays
[m,n] array with m observatios and n signals. If list, n must be equal on all arrays
- tolfloat, optional
Tolerance for covariance
- pyvib.stats.percentile(v, p, w=None)
Gets the p percentile of a PDF with weights w and values v 0.0 <= p <= w.sum if w is None, w.sum == 1.0
- Parameters
v (float 1D array) – Value samples
p (float) – Percentile
w (float 1D array, optional) – Weights of the value samples
- Returns
percentile – The percentile
- Return type
float
- pyvib.stats.spearman(x1)
Computes the spearman coefficient of input x1 np.array Assumes the comparison vector is linearly increasing.
- Parameters
x1 (float 1D array) – The signal to calculate Spearman coefficient of
- Returns
spearman – Spearman coefficient
- Return type
float